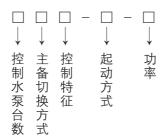


## CKK 系列水泵电气控制柜




#### 一、概述

CKK 系列水泵自动控制器系国内新颖的给排水自动控制装置,是本单位集多年水泵生产,应用控制的经验,经专家反复论证,优化线路,精心设计而成,其中多种电器是当前国内绝无仅有的,最先进的控制电路。为了配合水泵高效、可靠地使用,该系列根据不同的需要,设置了液位控制型、压力控制型、温度控制型、时间控制型、空调联控型、潜污泵专用型及消防控制型等七大类型,各型分别具有主回路短路、缺相、过载及专用泵的泵体泄漏、定子绕组的超温等保护功能。另外,各型又分单控型,多泵主用、备用互控型,主、备互控型产品都具备故障时主用泵自动切除,备用泵自动投入的功能。

该系列控制器功能齐全,质量可靠、造型美观,是各类水泵理想的配套产品,该系列控制器特别适用于工农业生产、市政工程、高层建筑的给排水、消防、喷淋、增压泵的自动控制及空调冷热水循环泵控制等多种场合,也适合其它交流电机的控制及起动。

### 二、型号意义



- 1、控制水泵台数特征字
- (1)单控;(2)二用;(2B)一用一备;(3)三用;(3B)二用一备;(4)四用;(4B)三用一备
- 2、主、备泵用切换方式特征字
- H. 手动切换 AC. 定时自动切换/手动切换
- As:交替自动切换/手动切换
- Y:定液位备用泵自动投入/手动切换
- 3、控制特征字

F:液位控制 P:压力控制 T:温度控制

S:时间控制 K:空调水泵控制 Q:潜污泵专用 H:消防控制

4、起动方式

J:Y-△降压起动

Z: 自耦降压起动 不注明为直接起动

5、电机功率特征字

数字即代表电机功率数,单位为 kw



#### 三、功能原理及用途

#### 1、多泵控制工作模式

二用:A型:可独立控制 1<sup>#</sup>、2<sup>#</sup>二台水泵,也可通过浮球组合联接,组成"1<sup>#</sup>用 2<sup>#</sup>备",或"2<sup>#</sup>用 1<sup>#</sup>备",当当流量变化或主用泵 故障时,液位达到备用泵起动控制点,备用泵自动投入工作。该型适用于控制二个水池液位,或用于控制变流量的给排水系统。B型:当流量变化或主泵故障时,备用泵自动投入。

一用一备:控制 1<sup>#</sup>、2<sup>#</sup>二台水泵,可工作于"1<sup>#</sup>用 2<sup>#</sup>备"或"2<sup>#</sup>用 1<sup>#</sup>备"两种工作方式,当主用泵出现故障时,备用泵自动投入工作。

三用:A型:可独立控制 1<sup>#</sup>、2<sup>#</sup>、3<sup>#</sup>三台水泵,也可通过浮球组合联接组成"1<sup>#</sup>、2<sup>#</sup>用 3<sup>#</sup>备"或"2<sup>#</sup>、3<sup>#</sup>、用 1<sup>#</sup>"或"1<sup>#</sup>、3<sup>#</sup>用 2<sup>#</sup>备",当流量变化或主用泵故障时,液位达到备用泵起动控制点,备用泵自动投入工作。该型适用于控制三个水池液位,或用于控制变流量的给排水系统。B型:主泵故障时,备用泵自动投入。

二用一备:控制 1<sup>#</sup>、2<sup>#</sup>、3<sup>#</sup>三台水泵,可工作于"1<sup>#</sup>、2<sup>#</sup>用 3<sup>#</sup>备"或"2<sup>#</sup>、3<sup>#</sup>、用 1<sup>#</sup>备"或"1<sup>#</sup>、3<sup>#</sup>用 2<sup>#</sup>备"三种工作方式,当主用泵 出现故障时,备用泵自动投入工作。

四用:A型:可独立控制"1<sup>#</sup>、2<sup>#</sup>、3<sup>#</sup>、4<sup>#</sup>"四台水泵,也可通过浮球组合联接,组成"1<sup>#</sup>、2<sup>#</sup>、3<sup>#</sup>、用 4<sup>#</sup>备"或"2<sup>#</sup>、3<sup>#</sup>、4<sup>#</sup>用 1<sup>#</sup>备"或"1<sup>#</sup>、3<sup>#</sup>、4<sup>#</sup>用 2<sup>#</sup>备"或"1<sup>#</sup>、2<sup>#</sup>、4<sup>#</sup>用 3<sup>#</sup>备",当流量变化或主用泵故障时,备用泵自动投入工作。该型适用于控制四个水池液位,或用于控制变流量的给排水系统。B型:同上。

三用一备:控制"1<sup>#</sup>、2<sup>#</sup>、3<sup>#</sup>、4<sup>#</sup>"四台水泵,可工作于"1<sup>#</sup>、2<sup>#</sup>、3<sup>#</sup>用 4<sup>#</sup>备"或"2<sup>#</sup>、3<sup>#</sup>、4<sup>#</sup>用 1<sup>#</sup>备"或"1<sup>#</sup>、3<sup>#</sup>、4<sup>#</sup>用 2<sup>#</sup>备"或"1<sup>#</sup>、2<sup>#</sup>、4<sup>#</sup>用 3<sup>#</sup>备"四种方式。当主用泵出现故障时,备用泵自动投入工作。

#### 2、多泵控制的主、备泵切换方式

H. 手动切换

手动切换主用泵和备用泵、主用泵故障后,备用泵会自动投入工作。

As:定时自动切换/手动切换

适用于主用、备用泵需用定时交换的场合,使长期连续工作时间均分于主、备泵,常规切换时间为 4/8h 选择型。当不需要定时自动切换时,可用开关转为手动切换方式选择主、备泵。该型具有备用泵自投功能。

Ac:交替自动切换/手动切换

适用于主用泵、备用泵需要轮流交替工作的场合,每启动一次主、备泵交换一次。在不需要交换时,也可用开关转为手动切换方式来选择主、备泵,该型具有备用泵自择功能。

Y:定液位备用泵自动投入/手动切换

适用于变流量给排水系统,当工作场合流量小时,主用泵工作;流量大或主用泵故障时,备用泵自动投入工作。主用泵、备用泵任意选择,手动切换。

#### 3、控制特征说明

F型,液位控制,该型控制柜应配高性能浮球开关,根据液高、低的变化,自动控制给排水系统水泵的工作或停止。

P型:压力控制,外接电接点压力表或压力开关,可根据管路压力的变化,实现自动开泵或关泵。该型控制器大量应用于生活给水及消防增压系统。该型同时适用浮球开关,限位开关及按钮遥控等各种方式,控制水泵的工作或停止。

T型:温度控制,外接温度控制器,根据设定的温度范围开泵或停泵。应用于恒温,热交换系统等。

S型:时间控制,机内装有时间控制器,用户根据需要设定好时间,则该控制器根据定时需要自动控制水泵的开启式或关闭。适用于各种定时或有规律间歇工作方式的控制。

K型:空调水泵控制,该型专为空调水泵设计的配套产品。水泵开启由控制中心操作,水泵运行时输出一个供制冷机组连机的控制接点,实现必须先开泵,后开机组的控制程序,确保机组的安全运行。

Q型:潜水式排污泵专用型,根据潜水泵的特点,该型除主回路短路、缺相、过载保护外,还具有泵体泄漏保护及泵电机定子绕组过热保护。

H型:消防专用型,该型按国家规范设计,消防、喷淋泵的启动可由:1、机箱面板手动;2、各消防栓开关启动;3、消防中心启动,并有泵开、泵停信号接点输至消防中心作指示用。



#### 四、该系列控制器引线编号、符号说明

#### 1、电源

RST三相电源讲线

:G 为接地线

#### 2、电动机

#### a、直接、自耦起动

1U、1V、1W.接 1# 水泵电动机 2U、2V、2W:接 2# 水泵电动机 3U、3V、3W:接3#水泵电动机 4U、4V、4W. 接 4# 水泵电动机

#### b、Y-△起动

1U<sub>1</sub>、1V<sub>1</sub>、1W<sub>1</sub>、1U<sub>2</sub>、1W<sub>2</sub>:接 1# 水泵电动机 2U<sub>1</sub>、2V<sub>1</sub>、2W<sub>1</sub>、2U<sub>2</sub>、2W<sub>2</sub>:接 2#水泵电动机 3U<sub>1</sub>、3V<sub>1</sub>、3W<sub>1</sub>、3U<sub>2</sub>、3W<sub>2</sub>:接 3# 水泵电动机 4U<sub>1</sub>、4V<sub>1</sub>、4W<sub>1</sub>、4U<sub>2</sub>、4W<sub>2</sub>:接 4<sub>#</sub>水泵电动机

#### 3、浮球开关

#### a、单池液位控制

f<sub>1</sub>、f<sub>2</sub>:接停泵浮球开关 1FS f<sub>1</sub>、f<sub>3</sub>:接停泵浮球开关 2FS

f<sub>1</sub>、f<sub>4</sub>:接备用泵投入浮球开关 3FS

#### b、多池液位控制

f<sub>1A</sub>、f<sub>2A</sub>:接 1# 泵停泵浮球开关 1FSA f<sub>1A</sub>、f<sub>3A</sub>:接 1# 泵停泵浮球开关 2FSA f<sub>1B</sub>、f<sub>2B</sub>:接 2# 泵停泵浮球开关 1FSB f<sub>1B</sub>、f<sub>2B</sub> 接 2# 泵停泵浮球开关 2FSB f<sub>1C</sub>、f<sub>2C</sub>:接3#泵停泵浮球开关1FSC f<sub>1C</sub>、f<sub>3C</sub>:接3#泵停泵浮球开关2FSC f<sub>1D</sub>、f<sub>2D</sub>:接 4# 泵停泵浮球开关 1FSD f<sub>1D</sub>、f<sub>3D</sub>:接 4# 泵停泵浮球开关 2FSD

### 4、潜污泵专用信号线

B<sub>1</sub>G:接 1# 泵漏水信号线

D<sub>1</sub>G<sub>2</sub>接 1# 泵温度信号线

B<sub>2</sub>G<sub>2</sub>接 2# 泵漏水信号线

D<sub>2</sub>G:接2#泵温度信号线

B<sub>3</sub>G<sub>4</sub>接 3# 泵漏水信号线

D<sub>3</sub>G:接3#泵温度信号线

B<sub>4</sub>G:接 4<sup>#</sup> 泵漏水信号线

D<sub>4</sub>G:接 4# 泵温度信号线

#### 5、压力控制型信号线

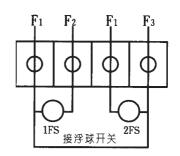
P<sub>0</sub>,P<sub>1</sub>:接压力表的压力下限接点 Po,Po:接压力表的压力下限接点

#### 6、温度控制型信号线

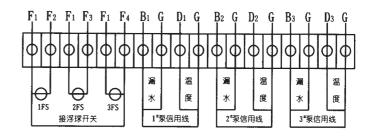
T<sub>0</sub>,T<sub>1</sub>:接温度表(或温控仪)温度下限接点 T<sub>0</sub>,T<sub>2</sub>:接温度表(或温控仪)温度下限接点

#### 7、空调联控型信号线

K<sub>1</sub>,K<sub>2</sub>:接中心控制室常闭(停止)按钮 K<sub>3</sub>,K<sub>4</sub>:接中心控制室常开(启动)按钮 K<sub>5</sub>, K<sub>6</sub>: 控制器输出联机常开触点 K<sub>7</sub>,K<sub>8</sub>:控制器输出联机常闭触点


#### 8、消防、喷淋泵信号线

H1、H2:接消防控制中心常闭(停止)按钮 H<sub>3</sub>、H<sub>4</sub>:接消防控制中心常开(启动)按钮 H<sub>5</sub>、H<sub>6</sub>: 1# 泵控制电路常开触点 H<sub>7</sub>、H<sub>8</sub>: 1# 泵控制电路常闭触点 H<sub>9</sub>、H<sub>10</sub>: 2# 泵控制电路常开触点 H<sub>11</sub>、H<sub>12</sub>: 2# 泵控制电路常闭触点 H<sub>13</sub>、H<sub>14</sub>: 3# 泵控制电路常开触点 H15、H16:3# 泵控制电路常闭触点


#### 五、该系列控制器信号引线接线端子

#### 1、液位控制

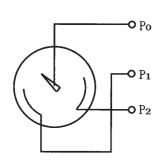
选用水银接点浮球,需用两只,接法如图一所示。 若选用磁性浮球,则只需一只,接法是:选将图一中f1、f3 端子短路,再将浮球开关接入 f1、f2 端子即可。

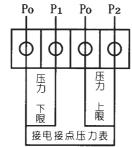


### 2、定液位备用泵自动投入



选用水银接点浮球,需用三只,接法如图二所示。


若选用磁性浮球,则只需两只,接法是:先将f1、f3 短接, 再将起泵停泵共同浮球接入 f1、f2 端子, 将备用泵浮球接入 f1、f4 端子。如果该型控制柜控制其它类型水泵,即没有漏水、 温度信号线的水泵,则只须将漏水、温度信号线端子悬空,不接 任何线路即可,否则该控制器不能正常工作。

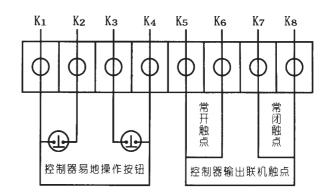



ZHENJIANG CHANGKAI MECHNICAL EQUIPMENT CO.,LTD

#### 3、压力控制型

传感器通常选用设置上、下限的电接点压力表(如 YX 系列),也可选用上限、下限独立的两只电接点压力表压力继电器。





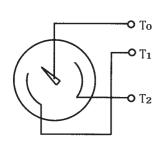

#### 5、空调联控型

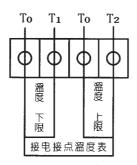
如果需要易地操作,将 K1、K2 接常闭(停止)按钮,K3、K4 接常闭(启动)按钮。

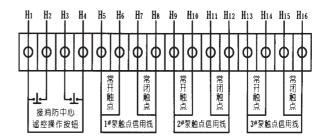
若不需易地操作, 先将 K1、K2 短路, K3、K4 开路, 这样水 泵则由控制器面板按钮操作。

如果需要先开水泵,后开机组,则将联机常开触点 K5、K6 串入空调机组的控制回路。




当压力降至下限压力时, $P_0$ , $P_1$  接通,水泵起动,压务升至上限压力时, $P_0$ , $P_2$  接通,水泵停止工作。


#### 4、温度控制型


传感器通常选用压力表设置上、下限的电接点温度表,也可选用其他温度调节仪。

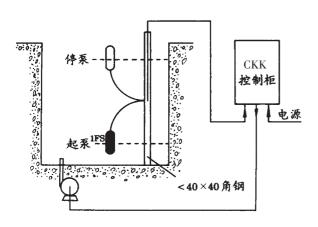
### 6、消防喷淋泵

下图为消防控制柜输往消防中心的遥控按钮信号线及各分泵泵开、泵停信号接点。





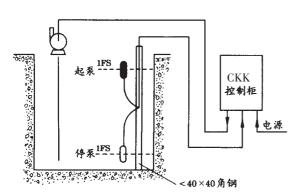



当温度达到上限设定值, $T_0$ 、 $T_2$  接通,水泵开始工作。当温度降至下限设定值, $T_0$ 、 $T_1$  接通,水泵停止工作。



HENJIANG CHANGKAI MECHNICAL EQUIPMENT CO..LTD

#### 六、该系列液位控制器外部安装

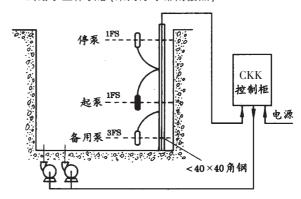

- 1、磁性浮球开关控制
  - (1)液位控制:只需选用一只磁性浮球开关
  - a、给水工作状态(采用浮球常闭接点)



先将控制柜机内 f1、f3 端子短接,再将浮球开关常闭接点 的两根引线分别接在 f1、f2 位置,这样当水满时,浮球自然上 升到白球位置常闭接点断开,水泵停止工作。

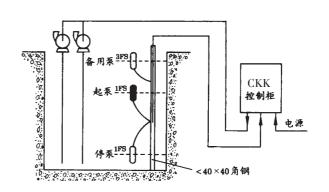
当水位下降至起泵位置(黑球所示),浮球开关常闭接点接 通,水泵开始工作。

b、排水工作状态(采用浮球常开接点)




先将控制柜内 f1、f3 端子短路,再将浮球常开接点的两根 引线接入 f1、f2 端子、当水位渐满,浮球自然升浮,当升至起泵 位置(黑球所示),常开接点接通,水泵开始工作,水位也就逐渐 下降, 当降到停泵位置(白球所示), 浮球常开接点断开, 水泵停 止工作。

#### (2)定液位备用泵自动切入


浮球开关应选用二只,即停泵、起泵共用一只浮球 1FS,另 一只浮球 3FS 控制备用泵。

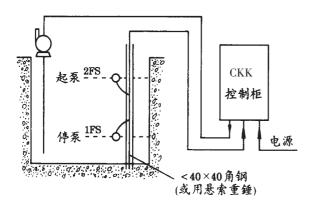
a、给水工作状态(采用浮球常闭接点)



先将控制柜内 f<sub>1</sub>、f<sub>3</sub> 短接,再将起泵、停泵共用浮球 1FS 的 两根引线接入 f<sub>1</sub>、f<sub>2</sub>端子,备用泵浮球 3FS 的常闭接点接入 f1、 f2 端子。当水位降到起泵位置(1FS 黑球所示),主用泵开始工 作,如果用水量大于主用泵给水流量(或主用泵出现故障),水 位继续下降,当降至备用泵起动位置(3FS 浮球所示),备用泵 投入工作,即主、备泵同时工作。当水位上升到停泵位置(1FS 白球所示),主、备泵停止工作。B型:主泵故障,备用泵立即投 入工作。

b、排水工作(采用浮球常开接点)



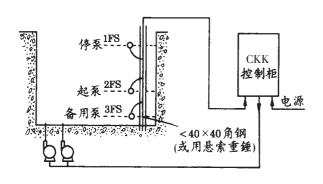

先将 f1、f3 短接、再将起泵、停泵共用浮球 1FS 常开接点 接入 f1、f2 端子,备用泵浮球 3FS 的常开接点接入 f1、f4 端子, 这样随着水位的上升或下降,浮球开关位置的变化,将控制水 泵的开启或停止或投入备用泵。B型:主泵故障,备用泵立即投 入。



ZHENJIANG CHANGKAI MECHNICAL EQUIPMENT CO..LTD

#### 2、水银浮球开关控制

(1)液位控制:选用两只浮球开关,分别控制水泵的开启或停止,停泵浮球 1FS 接  $f_1$ 、 $f_2$  端子,起泵浮球 2FS 接  $f_1$ 、 $K_3$  端子。 a、排水工作状态(采用常开浮球),图十一所示。




#### b、给水工作状态(采用常闭浮球)

只须将图十一中浮球开关上下对换即停泵浮球 1FS 在上方,起泵浮球 2FS 在下方即可。

(2) 定液位备用泵自动投入:选用三只浮球开关,分别控制水泵的起动,停止或备用泵投入,1FS 接  $f_1$ 、 $f_2$ ,2FS 接  $f_1$ 、 $f_3$ ,3FS 接  $f_1$ 、 $f_4$ 。

a、给水工作状态(采用常闭浮球),图十二所示。



#### b、排水工作状态(采用常 开浮球)

只须将图十二中停泵浮球 1FS 与备用泵浮球 3FS 上下对换,即:停泵浮球 1FS 在最下方,备用泵浮球 3FS 在最上方,起泵浮球 2FS 位置在中间即可。

#### 七、使用说明及注意事项

(1)本产品安装接线时,必须严格按照字母符号说明及接 线端子示意图对应联接,完成后应仔细复核接线的容量是否相 符。如不符则参考各参数表中所列的数据,重新整定电流—— 时间转换装置的电流动作值和保护延时整定值,及热继电器整 定值。

(2)手动操作:合上电源,则电源指示灯亮,将功能开关打在手动位置,开启各分泵控制开关(该开关与各组水泵相对应),将水泵工作选择开关打在所需的位置(即选好主用泵及备用泵),按起动按钮,电机开始启动,启动指示灯亮,当起动电流降至1.5倍额定电流时,电动机自动转换到全压运行状态,工作指示灯亮。按停止按钮,电机停止工作,停止指示灯亮。启动时如发现电流转换倍数不准确,应根据实际情况现场调整。如果某些控制电路利用时间继电器转换,应观察电流表在电机从启动到电流降至1.5倍额定电流所需的时间,重新整定时间继电器的时间设定值。

工作转换开关选择:如二泵系统,可选择"1\*用2\*备"或选择"2\*用1\*备"。三泵系统可选择"1\*、2\*用3\*备",或选择"1\*、3\*用2\*备"或选择"2\*、3\*用1\*备"。四泵系统可选择"1\*、2\*、3\*用4\*备"或……。

(3)自动操作:合上自动空气开关,选好主用泵、备用泵,将



功能开关打在自动位置,开启各分泵开关,水泵控制器就根据 液位高低,通过浮球开关位置的变化,自动启动主用泵或投入 的起动柜中所配备的电流互感器变比的不同,因此在整定电流 备用泵或停止水泵运行。

(4)故障: 当滴水成冰发生故障时,如电机过载、缺相、超温 流互感器的变比值按下式计算转换器的动作电流 1d。 及泵体漏水时,本产品自动切断电机供电,终止电机运行,并对 各种故障作出相应的指示。如果使用的是互备型控制柜,则在 任一组主用泵发生故障后,备用泵延时几秒自动切入工作。

(5)电动机在起动过程中,操作人员须认真监视控制柜起 动结束后,是否进入运行状态,以免起动时间过长而引起自耦 d、如用户在安装试车前需单独调试起动柜时,须将电流 防、灞淋泵等其它种类水泵,应定期开机运行、检查。

(6)DJ1-A 电流--时间转换器的调整与使用

a、为保证工作可靠,DJ1-A 电流--时间转换器可采用电 流和时间双重控制转换方式,即先将电流动作值进行整定。然 后观察电动机实际起动时间,将延时整定值整定在略大于电动 机的实际起动时间,将面板上的开关"K"扳到"工作"位置。正 常工作时,一般都是电流转换先动作,延时基本不起作用。但当 电流转换电路发生故障或由于负载变化,起动电流在规定时间 内仍不能衰减到小于 1.5 倍额定电流时,时间转换电路发生作 用,亦发生转换信号。

b、在某些情况下,如用户只要求延时动作(即不需要采用 电流转换)。此时只需将面板上的开关"K"扳到"试验"位置上, 则转换器完全当一个时间继电器使用,延时时间可在 5~120S 内任意调节。

c、电流整定值的计算方法:

由于每台起动柜控制的电动机的功率不同,以及每种规格 动作值之前必须根据实际电动机的额定电流值和控制柜中电

1d=(1.2~1.5)le/KH

式中:le——电动机额定电流(A)

KH——起动柜中电流互感器的变化。

1.2~1.5 为系数

变压器和电动机的损坏,对于不常用的水泵控制柜,如控制消 转换器面板上的开关"K"扳到"试验"位置,此时,由于起动柜 不带电机负载,故电流转换器仅作时间继电器用。



### 八、该系列控制器技术数据表

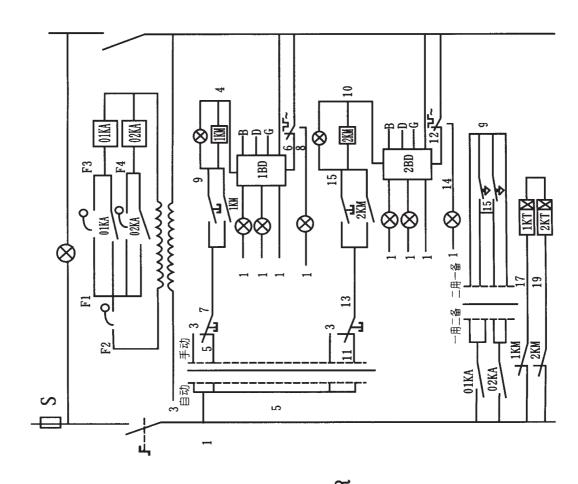
## 1、单控型参数表

| 序号   | 型 号       | 控制 | 功率   | 额定   | 起动 | 控制 | 主、备 | 箱、柜尺寸 mm     | 外担      | 接电缆端口 | 口数  |
|------|-----------|----|------|------|----|----|-----|--------------|---------|-------|-----|
| 7, 5 | <u> </u>  | 台数 | Kw   | 电流 A | 方式 | 特征 | 切换  | 高×宽×厚        | $P_{F}$ | 主回路   | 控回路 |
| 1    | 1Q-0.75   | 1  | 0.75 | 1.8  | 直接 | 液位 |     | 450×300×220  | 1       | 7     | 8   |
| 2    | 1Q-1.5    | 1  | 1.5  | 3.7  | 直接 | 液位 |     | 450×300×220  | 1       | 7     | 8   |
| 3    | 1Q-2.2    | 1  | 2.2  | 5    | 直接 | 液位 |     | 450×300×220  | 1       | 7     | 8   |
| 4    | 1Q-3      | 1  | 3    | 6.6  | 直接 | 液位 |     | 450×300×220  | 1       | 7     | 8   |
| 5    | 1Q-4      | 1  | 4    | 8.5  | 直接 | 液位 |     | 450×300×220  | 1       | 7     | 8   |
| 6    | 1Q-5.5    | 1  | 5.5  | 11.5 | 直接 | 液位 |     | 450×300×220  | 1       | 7     | 8   |
| 7    | 1Q-7.5    | 1  | 7.5  | 15.5 | 直接 | 液位 |     | 450×300×220  | 1       | 7     | 8   |
| 8    | 1Q-11     | 1  | 11   | 22   | 直接 | 液位 |     | 450×300×220  | 1       | 7     | 8   |
| 9    | 1Q-15     | 1  | 15   | 30   | 直接 | 液位 |     | 450×300×220  | 1       | 7     | 8   |
| 10   | 1Q-Z-15   | 1  | 15   | 30   | 自耦 | 液位 |     | 1040×520×340 | 1       | 7     | 8   |
| 11   | 1Q-Z-18.5 | 1  | 18.5 | 37   | 自耦 | 液位 |     | 1040×520×340 | 1       | 7     | 8   |
| 12   | 1Q-Z-22   | 1  | 22   | 44   | 自耦 | 液位 |     | 1040×520×340 | 1       | 7     | 8   |
| 13   | 1Q-Z-30   | 1  | 30   | 60   | 自耦 | 液位 |     | 1040×520×340 | 1       | 7     | 8   |
| 14   | 1Q-Z-37   | 1  | 37   | 72   | 自耦 | 液位 |     | 1300×560×400 | 1       | 7     | 8   |
| 15   | 1Q-Z-45   | 1  | 45   | 85   | 自耦 | 液位 |     | 1300×560×400 | 1       | 7     | 8   |
| 16   | 1Q-Z-55   | 1  | 55   | 105  | 自耦 | 液位 |     | 1300×560×400 | 1       | 7     | 8   |
| 17   | 1Q-Z-75   | 1  | 75   | 140  | 自耦 | 液位 |     | 1600×600×450 | 1       | 7     | 8   |
| 18   | 1Q-Z-90   | 1  | 90   | 170  | 自耦 | 液位 |     | 1600×600×450 | 1       | 7     | 8   |
| 19   | 1Q-Z-110  | 1  | 110  | 204  | 自耦 | 液位 |     | 1800×650×550 | 1       | 7     | 8   |
| 20   | 1Q-Z-132  | 1  | 132  | 230  | 自耦 | 液位 |     | 1800×650×550 | 1       | 7     | 8   |

#### 2 一用一备型参数表

| 2、一用一备型参数表<br> |             |    |      |      |    |    |     |              |                |       |     |
|----------------|-------------|----|------|------|----|----|-----|--------------|----------------|-------|-----|
| 序号             | 型 号         | 控制 | 功率   | 额定   | 起动 | 控制 | 主、备 | 箱、柜尺寸_mm     | 外担             | 接电缆端1 | 口数  |
| 71, 5          | 至           | 台数 | Kw   | 电流 A | 方式 | 特征 | 切换  | 高×宽×厚        | P <sub>E</sub> | 主回路   | 控回路 |
| 1              | 2BHQ-0.75   | 2  | 0.75 | 1.5  | 直接 | 液位 | 手动  | 450×300×220  | 1              | 10    | 12  |
| 2              | 2BHQ-1.5    | 2  | 1.5  | 3.7  | 直接 | 液位 | 手动  | 450×300×220  | 1              | 10    | 12  |
| 3              | 2BHQ-2.2    | 2  | 2.2  | 5    | 直接 | 液位 | 手动  | 450×300×220  | 1              | 10    | 12  |
| 4              | 2BHQ-3      | 2  | 3    | 6.6  | 直接 | 液位 | 手动  | 450×300×220  | 1              | 10    | 12  |
| 5              | 2BHQ-4      | 2  | 4    | 8.5  | 直接 | 液位 | 手动  | 450×300×220  | 1              | 10    | 12  |
| 6              | 2BHQ-5.5    | 2  | 5.5  | 11.5 | 直接 | 液位 | 手动  | 600×400×200  | 1              | 10    | 12  |
| 7              | 2BHQ-7.5    | 2  | 7.5  | 15.5 | 直接 | 液位 | 手动  | 600×400×200  | 1              | 10    | 12  |
| 8              | 2BHQ-11     | 2  | 11   | 22   | 直接 | 液位 | 手动  | 600×400×200  | 1              | 10    | 12  |
| 9              | 2BHQ-15     | 2  | 15   | 30   | 直接 | 液位 | 手动  | 650×420×200  | 1              | 10    | 12  |
| 10             | 2BHQ-Z-15   | 2  | 15   | 30   | 自耦 | 液位 | 手动  | 1040×520×340 | 1              | 10    | 12  |
| 11             | 2BHQ-Z-18.5 | 2  | 18.5 | 37   | 自耦 | 液位 | 手动  | 1040×520×340 | 1              | 10    | 12  |
| 12             | 2BHQ-Z-22   | 2  | 22   | 44   | 自耦 | 液位 | 手动  | 1300×560×400 | 1              | 10    | 12  |
| 13             | 2BHQ-Z-30   | 2  | 30   | 60   | 自耦 | 液位 | 手动  | 1300×560×400 | 1              | 10    | 12  |
| 14             | 2BHQ-Z-37   | 2  | 37   | 72   | 自耦 | 液位 | 手动  | 1300×560×400 | 1              | 10    | 12  |
| 15             | 2BHQ-Z-45   | 2  | 45   | 85   | 自耦 | 液位 | 手动  | 1300×560×400 | 1              | 10    | 12  |
| 16             | 2BHQ-Z-55   | 2  | 55   | 105  | 自耦 | 液位 | 手动  | 1600×600×450 | 1              | 10    | 12  |
| 17             | 2BHQ-Z-75   | 2  | 75   | 140  | 自耦 | 液位 | 手动  | 1600×600×450 | 1              | 10    | 12  |
| 18             | 2BHQ-Z-90   | 2  | 90   | 170  | 自耦 | 液位 | 手动  | 1800×650×550 | 1              | 10    | 12  |
| 19             | 2BHQ-Z-110  | 2  | 110  | 204  | 自耦 | 液位 | 手动  | 1800×650×550 | 1              | 10    | 12  |
| 20             | 2BHQ-Z-132  | 2  | 132  | 230  | 自耦 | 液位 | 手动  | 1800×650×550 | 1              | 10    | 12  |

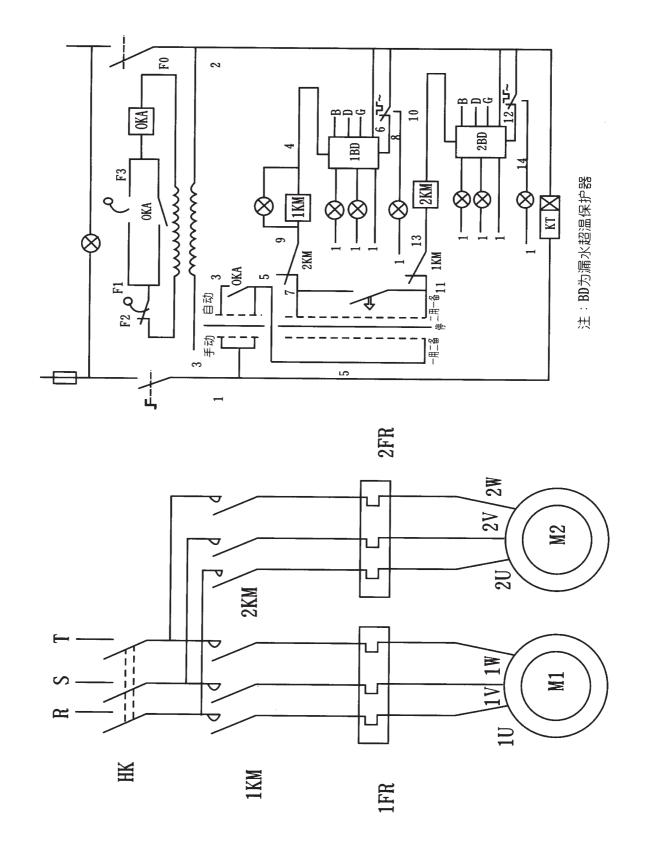



### 八、该系列控制器技术数据表

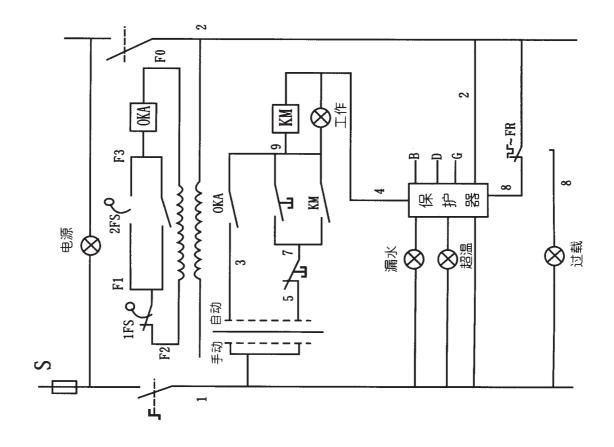
## 3、二用型参数表

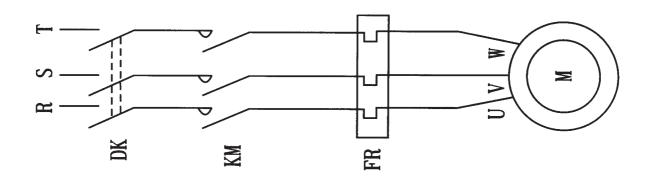
| 序号   | 型 号        | 控制 | 功率   | 额定   | 起动 | 控制 | 主、备     | 箱、柜尺寸 mm      | 外       | 接电缆端 | 口数  |
|------|------------|----|------|------|----|----|---------|---------------|---------|------|-----|
| 77 5 | 至 5        | 台数 | Kw   | 电流 A | 方式 | 特征 | 切换      | 高×宽×厚         | $P_{E}$ | 主回路  | 控回路 |
| 1    | 2YY-0.75   | 2  | 0.75 | 1.8  | 直接 | 液位 | 定液位自动投入 | 600×400×220   | 1       | 10   | 12  |
| 2    | 2YY-1.5    | 2  | 1.5  | 3.7  | 直接 | 液位 | 定液位自动投入 | 600×400×220   | 1       | 10   | 12  |
| 3    | 2YY-2.2    | 2  | 2.2  | 5    | 直接 | 液位 | 定液位自动投入 | 600×400×220   | 1       | 10   | 12  |
| 4    | 2YY-3      | 2  | 3    | 6.6  | 直接 | 液位 | 定液位自动投入 | 600×400×220   | 1       | 10   | 12  |
| 5    | 2YY-4      | 2  | 4    | 8.5  | 直接 | 液位 | 定液位自动投入 | 600×400×220   | 1       | 10   | 12  |
| 6    | 2YY-5.5    | 2  | 5.5  | 11.5 | 直接 | 液位 | 定液位自动投入 | 600×400×220   | 1       | 10   | 12  |
| 7    | 2YY-7.5    | 2  | 7.5  | 15.5 | 直接 | 液位 | 定液位自动投入 | 600×400×220   | 1       | 10   | 12  |
| 8    | 2YY-11     | 2  | 11   | 22   | 直接 | 液位 | 定液位自动投入 | 600×400×220   | 1       | 10   | 12  |
| 9    | 2YY-15     | 2  | 15   | 30   | 直接 | 液位 | 定液位自动投入 | 650×420×220   | 1       | 10   | 12  |
| 10   | 2YY-Z-15   | 2  | 15   | 30   | 自耦 | 液位 | 定液位自动投入 | 1040×850×340  | 1       | 10   | 12  |
| 11   | 2YY-Z-18.5 | 2  | 18.5 | 37   | 自耦 | 液位 | 定液位自动投入 | 1040×850×340  | 1       | 10   | 12  |
| 12   | 2YY-Z-22   | 2  | 22   | 44   | 自耦 | 液位 | 定液位自动投入 | 1040×850×340  | 1       | 10   | 12  |
| 13   | 2YY-Z-30   | 2  | 30   | 60   | 自耦 | 液位 | 定液位自动投入 | 1040×850×340  | 1       | 10   | 12  |
| 14   | 2YY-Z-37   | 2  | 37   | 72   | 自耦 | 液位 | 定液位自动投入 | 1300×950×400  | 1       | 10   | 12  |
| 15   | 2YY-Z-45   | 2  | 45   | 85   | 自耦 | 液位 | 定液位自动投入 | 1300×950×400  | 1       | 10   | 12  |
| 16   | 2YY-Z-55   | 2  | 55   | 105  | 自耦 | 液位 | 定液位自动投入 | 1300×950×400  | 1       | 10   | 12  |
| 17   | 2YY-Z-75   | 2  | 75   | 140  | 自耦 | 液位 | 定液位自动投入 | 1700×1000×460 | 1       | 10   | 12  |
| 18   | 2YY-Z-90   | 2  | 90   | 170  | 自耦 | 液位 | 定液位自动投入 | 1700×1000×460 | 1       | 10   | 12  |
| 19   | 2YY-Z-110  | 2  | 110  | 204  | 自耦 | 液位 | 定液位自动投入 | 2000×1300×650 | 1       | 10   | 12  |
| 20   | 2YY-Z-132  | 2  | 132  | 230  | 自耦 | 液位 | 定液位自动投入 | 2000×1300×650 | 1       | 10   | 12  |

## 4、二用一备型参数表


| È - | ш п         | 控制 | 功率   | 额定   | 起动 | 控制 | 主、备 | 箱、柜尺寸 mm     | 外              | 接电缆端 | 口数  |
|-----|-------------|----|------|------|----|----|-----|--------------|----------------|------|-----|
| 序号  | 型 号         | 台数 | Kw   | 电流 A | 方式 | 特征 | 切换  | 高×宽×厚        | P <sub>E</sub> | 主回路  | 控回路 |
| 1   | 3BHQ-0.75   | 3  | 0.75 | 1.8  | 直接 | 液位 | 手动  | 650×420×220  | 1              | 13   | 16  |
| 2   | 3BHQ-1.5    | 3  | 1.5  | 3.7  | 直接 | 液位 | 手动  | 650×420×220  | 1              | 13   | 16  |
| 3   | 3BHQ-2.2    | 3  | 2.2  | 5    | 直接 | 液位 | 手动  | 650×420×220  | 1              | 13   | 16  |
| 4   | 3BHQ-3      | 3  | 3    | 6.6  | 直接 | 液位 | 手动  | 650×420×220  | 1              | 13   | 16  |
| 5   | 3BHQ-4      | 3  | 4    | 8.5  | 直接 | 液位 | 手动  | 650×420×220  | 1              | 13   | 16  |
| 6   | 3BHQ-5.5    | 3  | 5.5  | 11.5 | 直接 | 液位 | 手动  | 650×420×220  | 1              | 13   | 16  |
| 7   | 3BHQ-7.5    | 3  | 7.5  | 15.5 | 直接 | 液位 | 手动  | 650×420×220  | 1              | 13   | 16  |
| 8   | 3BHQ-11     | 3  | 11   | 22   | 直接 | 液位 | 手动  | 800×600×250  | 1              | 13   | 16  |
| 9   | 3BHQ-15     | 3  | 15   | 30   | 直接 | 液位 | 手动  | 800×600×250  | 1              | 13   | 16  |
| 10  | 3BHQ-Z-15   | 3  | 15   | 30   | 自耦 | 液位 | 手动  | 1300×800×500 | 1              | 13   | 16  |
| 11  | 3BHQ-Z-18.5 | 3  | 18.5 | 37   | 自耦 | 液位 | 手动  | 1300×800×500 | 1              | 13   | 16  |
| 12  | 3BHQ-Z-22   | 3  | 22   | 44   | 自耦 | 液位 | 手动  | 1300×800×500 | 1              | 13   | 16  |
| 13  | 3BHQ-Z-30   | 3  | 30   | 60   | 自耦 | 液位 | 手动  | 1300×800×500 | 1              | 13   | 16  |
| 14  | 3BHQ-Z-37   | 3  | 37   | 72   | 自耦 | 液位 | 手动  | 1600×800×550 | 1              | 13   | 16  |
| 15  | 3BHQ-Z-45   | 3  | 45   | 85   | 自耦 | 液位 | 手动  | 1600×800×550 | 1              | 13   | 16  |
| 16  | 3BHQ-Z-55   | 3  | 55   | 105  | 自耦 | 液位 | 手动  | 1800×900×550 | 1              | 13   | 16  |
| 17  | 3BHQ-Z-75   | 3  | 75   | 140  | 自耦 | 液位 | 手动  | 1800×900×550 | 1              | 13   | 16  |







注:主泵流量过大或故障时,备用泵自动投入工作,

BD为漏水超温保护器











## 十、系列控制器常见故障及维修

| 故障原因      | 故障现象                                                | 原因分析                                                        | 处理方法                                               |
|-----------|-----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|
| 不能正常工作    | 不能开启电机                                              | 1.三相电源进线没电或缺相<br>2.控制电路熔断器熔断<br>3.控制电路接触器损坏                 | 1.检查三相进线<br>2.检查熔断器<br>3.更换接触器                     |
| 漏水        | 漏水灯亮                                                | 1.泵体泄漏<br>2.BD 控制线路板元件损坏<br>3.控制电路电源变压器损坏                   | 1.修泵<br>2.仔细检查线路板<br>3.检查电源变压器变压器初级 380V<br>次级 12V |
| 过载        | 过载灯亮                                                | 1.电机过载<br>2.叶轮被杂物卡住<br>3.热断电器参数整定不准确                        | 1.检查电机<br>2.清洗泵体流道<br>3.重新整定热继电器参数                 |
| 超温        | 超温灯亮                                                | 水池缺水                                                        | 调整浮球位置                                             |
| 液位自动控制不工作 | 手动工作正常自动不工作                                         | 浮球故障                                                        | 更换浮球                                               |
| 自耦减压工作不正常 |                                                     | 1.电流~时间转换继电器故障<br>2.转换电路中间继电器线圈损坏<br>3.接触器损坏<br>4.时间继电器线圈损坏 | 仔细检查,更换                                            |
| 自耦减压不工作   | 不能启动电机                                              | 1.JD1-A 线圈损坏<br>2.时间继电器损坏                                   | 仔细检查,更换                                            |
| 备用泵不能自动投入 | 1.潜污泵主用泵损坏,备用泵<br>不能自动投入<br>2.主用泵损坏,备用泵不能自<br>动切入工作 | 1.备用泵控制浮球损坏<br>2.故障时间继电器(AH3-3-10S)                         | 1.更换浮球<br>2.更换时间继电器                                |
| Y-△降压不工作  | 1.能启动电机,但不能转换到<br>全压工作<br>2.不能启动电机                  | 1.转换时间继电器损坏<br>2.接触器 IXC 损坏                                 | 1.仔细检查,更换<br>2.仔细检查,更换                             |